不連続体解析法による地震時岩盤斜面崩壊の挙動解析

Collaspe analysis of rock slope failure cased by earthquake, using dicontinuous modeling method

萩原育夫(サンコーコンサルタント)、佐々木猛(サンコーコンサルタント)、三木茂(基礎地盤コンサルタンツ)、 片田良之(サンコーコンサルタント)吉中龍之進(埼玉大学)、大西有三(京都大学) Ikuo HAGIWARA(Suncoh Consultants), Takeshi SASAKI(Suncoh Consultants), Shigeru MIKI(Kiso-jiban Consultants), Yoshiyuki KATADA(Suncoh Consultants), Ryunoshin YOSHINAKA(Saitama Univ.), Yuzo OHNISHI(Kyoto Univ.) キーワード:不連続変形法、複合降伏モデル、マニホールド法、2004 年新潟県中越地震 Keywords: Discontinuous Deformation Analysis, Multiple Yielding Model,

Manifold Method, The Mid Niigata Prefecture Earthquake in 2004

1. はじめに

地震時の斜面崩壊には、地形地質・不連続面状況・ 力学特性・地下水状況等の多様な要素が複雑に関与 するものと考えられるが、岩盤斜面の崩壊では不連 続面の分布や性状が斜面の安定性や崩壊挙動に大き く影響すると想定される。また,2004年新潟県中越 地震で問題となった崩土による河道閉塞等のように、 崩壊の影響度を的確に評価することが防災対策を検 討する上で重要と考えられる。本検討ではこれらの 点を踏まえて複合降伏モデル解析法と不連続変形よ る地震時岩盤斜面崩壊の挙動解析例を示し、解析手 法の適用性や課題について示す。

2. 斜面崩壊事例の概要

2004 年新潟県中越地震における妙見地区(白岩) の斜面崩壊を検討対象とした。当該箇所は本震の震 源から北西約 8km の信濃川右岸斜面に位置し、巾 200m×斜長約 120m×比高約 75m の斜面が地震時 に崩壊し、数 m~数 10m の大規模岩体や岩屑から 構成される崩土を形成した。図-1、図-2に測量及び 地質調査結果にもとづく平面図及び断面図を、表-1 に岩盤物性を示す 1)。斜面を構成する岩盤は新生代 新第三紀のシルト岩を主体として層厚 3m 程度の泥 岩及び凝灰質砂岩が挟在し、層理面は崩壊斜面に対 して流れ盤(傾斜 22 度程度)を示した。シルト岩 類は概ね塊状で、数 m~数 10 間隔で層理面と直交 する方向に卓越する割れ目系が確認された。室内岩 石試験の結果から、凝灰質砂岩はシルト岩類に比べ て相対的に小さい強度特性を有する傾向が確認され た。また、凝灰質砂岩は過去に研磨剤として採掘さ れた経緯があり、同層準には残柱方式の採掘跡が分 布すると推定され、相対的に脆弱で空洞等を伴った 流れ盤状の凝灰質砂岩層に沿って崩壊が発生したも のと推定された。

3. 事例解析

解析は不連続面を考慮した等価連続体モデル(複 合降伏モデル²⁾)によって安定性に関する解析を行 った後、崩壊面を規定して不連続体モデル(不連続 変形法³⁾)によって崩壊土塊の挙動解析を行った。

表-1 地盤物性の概要¹⁾

	Siltstone	Tuffaceous sandstone
Compressive strength(MPa)	5.5	1.15
Tensile strength (MPa)	0.5	0.03
Elastic modulus(GPa)	1.2	0.33
Poisson's ratio	0.23	0.23
Cohesion (un-drained)(MPa)	1.65	0.58
Cohesion(drained)(MPa)	1.24	0.38
Friction angle(un-drained)(°)	22	32
Friction angle(drained)(°)	30	35
Unit mass (kN/m ³)	18.7	18.7

(b) Joint properties

(a) Intact rock

	Stiffness	Stiffness		Shear strength	
	Shear (MN/m ³)	Normal (MN/m³)	Cohesion (MPa)	Friction angle(°)	
Siltstone	14700	140000	0.5	38	
Tuffaceous sandstone	14700	140000	0.4	38	

※試験結果及び一般値

各解析では表-1に示した地盤物性を用いた。

(1) 複合降伏モデルによる解析結果

図-3に解析結果の水平応力分布例を示し、図-4に 次式によって算出した凝灰質砂岩層沿いの局所安全 率を示す。

 $FS_i = T / S_i$

ここに、FSi:局所安全率、T:凝灰質砂岩のせん断強 度、Si: せん断応力、i: 要素番号である。地震力は 水平加速度(0.3G または 0.4G)、鉛直加速度(0.15G) として与え、坑道跡の有無を考慮した2ケースにつ いて解析した。解析結果から、各ケースとも凝灰砂 岩層に応力が集中する傾向が確認され、凝灰質砂岩 層沿いの局所安全率は斜面末端部で低下し FSi=0.6 ∼1.0 程度を示す傾向が確認された。

(2) 不連続変形法による解析結果

図-5に解析結果を示す。解析は凝灰質砂岩層をす べり面としてすべり面から上位をブロック分割した 形状とし、地震動は当該箇所近傍の加速度記録 (NIG019)を基盤ブロック外力として与えた。解析結 果では 15 秒後に崩落運動が概ね停止し、移動速度 は4~8m/sec程度を示した。解析結果の崩壊ブロッ クは中央部に大規模なすべり岩体を形成しながら約 50m移動して停止し、現地観察結果と概ね合致した。 4. まとめ

複合降伏モデル及び不連続変形法の解析結果は事 例箇所の現地状況と概ね合致し、大局的な崩壊挙動 を再現できたと捉えられる。ただし、地震時の崩壊 挙動解析の適用性や精度の向上の点からは、斜面内 部における地震動伝播、崩壊の進展、地下水の影響 等を解析に組み入れることが必要と考えられる 455。 これらについては室内実験・現地調査等の様々な取 り組みが必要と考えられるが、数値解析手法に関し ては、震動等に関する連続体モデルの概念を不連続 体解法に組み入れることが有効と考えられる。具体 的な手法としてはマニホールド法 6等の有限被覆法 と呼ばれる解析手法があげられ、地震時崩壊解析へ の導入を今後検討したい(図-6)。

引用・参考文献

- 1)Yoshinaka, R. et al. (2007): Consideration on stability and collapse at earthquake of rock slope based on a case,
- 2) 佐々木猛・吉中龍之進・永井文夫(1994):有限要素法による節 理性岩盤の複合降伏モデルに関する研究, 土木学会論文集, No.505/III-29, p/59-68
- 3)Shi, G.H. and Goodman, R.E.(1984) : Discontinuous Deformation Analysis , 25th. U.S.Symposium on Rock Mechanics, p.269-277
- 4)日本地すべり学会(2007): 2004 年新潟県中越地震報告(I)

5)日本地すべり学会(2008): 2004 年新潟県中越地震報告(Ⅱ)

6)Shi. G. H.(1991) : Manifold method of material analysis ,Trans. 9th Army Conf. on Appl. Math. and Comp., Rep. No. 92-1. U.S. Army Res. Office,

Ĕ

Local

図-6 マニホールド法の解析モデル例